Physicochemical Characteristics and Heavy Metal Levels in Water Samples from Five River Systems in Delta State, Nigeria
ثبت نشده
چکیده
Physicochemical characteristics and heavy metal levels in water samples from five river systems in central part of Delta State, Nigeria were investigated to access the quality status of the rivers. All the watersheds selected for study were well distributed and possessed similar geology, climate, soil, and vegetation characteristics. Studies on the water samples collected from the rivers showed that the physicochemical characteristics of the river varied significantly. The mean concentration of total solids within the rivers were 35.46mg/l, 31.57mg/l, 18.82mg/l and 45.53mg/l for Ase, Agbarho, Ethiope, Ekakpamre and Afiesere rivers respectively. Similarly, the mean concentration of heavy metal in the river system gave the following ranges zinc 0.93-2.96mg/l, copper 0.01-0.03mg/l, lead 0.003-0.08mg/l, cadmium 0.00-0.004mg/l, chromium 0.001-0.03mg/l, nickel 0.01-0.004mg/l, manganese 0.0080.04mg/l, iron 0.03-0.08mg/l. A comparison of the heavy metal concentration in the respective samples and recommended international standard such as WHO 1993 showed that the rivers were not significantly contaminated and are therefore suitable for domestic and industrial purpose. From the findings, there is need to protect the quality of the water systems for recreational, industrial and domestic uses. It is hoped that the result of this study would help the Delta State government and other interest groups to maintain existing projects, plan and also to execute properly future development programs in the study area. @ JASEM Chemical enrichment in river system are derived through a combined effect of both industrial and municipal effluents and runoffs from surrounding area or through solution effects from adjacent soil. The presence of nutrients in rivers may be attributed to the process of organic mineralization of nitrates and phosphates derived principally from surface runoffs from the immediate vicinity (forests, farms and settlement) and perhaps by insitu minerialization (Ikomi 1997; Kaizer and Adaipkoh 2007; Kaizer and Osakwe 2007). Soil erosion is closely linked with high surface runoffs and rapid siltation of surface water system resulting in subsequent decline in its portability. Eroded materials may exist in river systems as dissolved solids or suspended solids but within a particular regime of flow, river systems bear with them sediments, which constitute the byproducts of processes operating within the environment through which they flow. These are derived though leaching of soil profiles, surface runoffs, direct dumping of wastes (municipal and industry), soil erosion; atmospheric fallouts e.t.c. Heavy metals are toxic and can accumulate in a system without being noticed (Ihenyen 2002). This makes them a source of concern. Sources of heavy metals includes industrial activates (mining, oil exploration activities, manufacturing and agricultural practices), domestics and commercial practices that generates wastes, and natural factors. Metal content in rivers may vary between the water column and bed sediments. However, variation in concentration of parameters depends on concentration from processes operating within the catchments. For the purpose of this study, bed sediments were not considered as part of the sediment load in this study because of the complexity in assessing the actual amount of bed sediments carried along with the water column during each flow regime. This work is therefore aimed at studying the physicochemical characteristics and heavy metal content of the various river systems with a view of accessing the effects of land use on the quality of rivers. It is hoped that the research findings would help in proper assessment of the contaminant status of the various watersheds, aimed towards improving surface water quality within the inland oil producing area of Delta State. Description of Study Area: The studied watersheds are located in Delta State, Nigeria (longitudes 3 E – 9E and latitudes 430 N-521N) and lies within the southern oil rich Niger Delta region. Five watersheds were selected for study. They include the Ethiope, Agbarho, Ekakpamre, Afiesere and Ase rivers. The watersheds were well distributed and posses similar geology, climates, soil, vegetation and drainage characteristics (Atakpo et al., 2000; Ikomi and Ojieh 1997; Ikomi and Emuh 2000). MATERIALS AND METHOD 93 waters samples were collected systematically from five watersheds within the period of 12months in three sets from January to December. The water samples were collected at an average distance of about 1km apart from each watershed. Duplicate samples were collected at each point in chemically clean 1liter containers each and labeled A and B with Physicochemical Characteristics and Heavy Metal Levels in Water Samples from Five River Systems in Delta State,............. * Corresponding author: 1* Kaizer, A.N. 84 water sample description detailing the sample condition. All samples labeled A were stabilized by acidifying them with concentrated trioxonitrate V acid (HNO3) to a pH of 2. This was done to retard biological action, hydrolysis of some chemical compounds and to reduce volatility of some chemical constitutes. They were stored in ice packed coolers and preserved at a temperature of 4 c before transportation to the laboratory for analysis. This method of preservation was done in order to ensure that no significant changes in composition occurred before the analysis was carried out in the laboratory. All analysis were carried in accordance with international standard methods (APHA 1995) and expressed in mg/l. Preparation of Standard Solutions: One gram of the pure metal was dissolved in 20ml of HCl and diluted in 1 litre mark of a volumetric flask with de-ionized water to give 100mg/l of the metal stock solution. This process was repeated for all metals analyzed. Several solutions of concentrations 4.00mg/l, 6.00mg/l and 8.00mg/l were prepared from the stock solution by several dilutions as described by Allen 1974. Heavy metals, analyses were carried out with the aid of the Parkinson absorption spectrometer model 403 using the required lamps. Results / Discussion: The result of physicochemical analyses carried out on the water samples collected from the selected rivers within the studied area showed various concentrations of the parameters studied in both the oil field area and non oil field area (Table 1). The sediment load was studied based on the Total Solid (TS) concentration obtained through addition of the Total Dissolved Solid (TDS) and Total Suspended Solid (TSS) concentrations for each of the samples. The TS content was mainly due to the dissolved solids with suspended solids present only in small quantities. The result showed that the concentration of the Total Dissolved Solids were greater than the Total Suspended Solid in the samples. Average concentrations of Total Solids in the samples ranged from 18.29mg/l in river Ethiope at Abraka to 35.46mg/l in Ase Rivers at Ashaka, 45.53mg/l in Afiesere River at Ughelli, 31.82mg/l in Ekapamre River at Ughelli, 31.57mg/l at Agbarho River at Agbarho all in the oil field areas. This low value at Abraka (NOF) reflects the low level of development and mirrors both land and water use effect on the river as compared to other rivers sampled with the highest TDS obtained in the Ase River (NOF). Mean concentration of TDS values recorded were, Ashaka 32.60mg/l for, Afiesere(OF) 42.87mg/l, Ekakpamre(OF) 27.80mg/l, Agbarho(OF) 30.37mg/l, and Ehtiope River(NOF) 16.68mg/l. The observed mean Total Dissolved Solids concentration in the rivers as obtained varied between a minimum of 17.63mg/l to a maximum of 42.87mg/l with the highest concentration recorded in Afiesere River at Ughelli town. A plot of the concentration of TDS within the studied rivers and conductivity shows that conductivity was directly proportional to the concentration of the TDS. The high conductivity values recorded in Ughelli and Agbarho were probably associated with acidification mainly from the effect of acid deposition from gas flaring and effluent discharged into these receiving water bodies from oil installations within these areas. However, Municipal waste and other industrial waste products contribute also to a lesser extent because of the level of development in these area and poor waste disposal practices. The concentration of the total suspended solids was closely linked to erosion and processes operating within the studied watersheds. The low TSS concentration in the samples analyzed show that the rates of erosion at the watersheds were minimal. However, presence of suspended solids may have been associated with small-scale mining activities such as dredging of sharp sand along the river channels and banks. Generally, all solid content analyzed for, showed concentrations below the World Health Organization (WHO) standards, (1996) for drinking water. Chemical enrichment in river systems were derived through a combined effect of both industrial and municipal effluents and runoffs from surrounding area or through solution effect from adjacent soil. Similarly, the presence of nutrients in the rivers was attributed to the processes of organic mineralization of nitrates and phosphates derived principally from surface runoff from the immediate vicinity (forests, farms and communities) and perhaps by insitu mineralization (Ikomi, 1997). Soil erosion was closely linked with high surface runoffs and rapid siltation of the surface water systems resulting to occasional decline in their portability. The eroded materials exist in the river systems as dissolved solids and/or suspended solids. However, within a particular regime of flow, river systems carry along with them sediments, which constitute the by-product of processes operating within the environment through which they flow. These were derived though leaching of adjourning soil profiles, surface runoffs; direct dumping of wastes (municipal and industrial), soil erosion, atmospheric fallouts etc. Physicochemical Characteristics and Heavy Metal Levels in Water Samples from Five River Systems in Delta State,............. * Corresponding author: 1* Kaizer, A.N. 85 TABLE 1: Range and Mean Concentration of Physicochemical Parameters in Studied Rivers Parameters Ase River Agbarho River Ethiope River Ekakpamre River Afiesere River WHO Limits Temperature (C) 25.99-26.9 (26.45±0.73) 25.5-26.35 (25.93±0.55) 25.80-26.40 (26.10±0.59) 25.48-25.65 (25.57±0.34) 26.5-26.8 (26.65±0.21) 1993 Conductivity (microohm/cm) 65.5-68.6 (67.55±3.48) 42.53-53.60 (52.78±2.93) 27.40-35.64 (31.52±0.81) 62.51-63.8 (63.01±1.73) 73.8-78.2 (75.00±1.73) pH 5.93-6.20 (6.07±0.17) 5.62-5.84 (5.73±0.39) 5.57-6.42 (6.39±0.25) 5.55-6.25 (5.26±0.14) 5.22-6.15 (5.71±0.31) 65.85 Total solids mg/l 32.8537.25 (35.46±0.67) 29.50-39.83 (31.57±2.96) 18.65-18.89 (18.69±0.59) 29.60-32.03 (31.82±0.81) 41.63-48.15
منابع مشابه
Assessment of Heavy Metals and Microbial Load of Groundwater Samples from Ibadan Metropolis Nigeria
The present study investigates groundwater quality in terms of heavy metals level and microbial contamination as well as the impact of bleaching powder on microbial load of groundwater samples in close proximity to a surface water body inside selected areas of Ibadan Nigeria. To do so, it collects nine water samples from three boreholes and six hand-dug wells from six locations, namely Eleyele,...
متن کاملAssessment of Heavy Metals and Microbial Load of Groundwater Samples from Ibadan Metropolis Nigeria
The present study investigates groundwater quality in terms of heavy metals level and microbial contamination as well as the impact of bleaching powder on microbial load of groundwater samples in close proximity to a surface water body inside selected areas of Ibadan Nigeria. To do so, it collects nine water samples from three boreholes and six hand-dug wells from six locations, namely Eleyele,...
متن کاملHeavy metal levels and physico--chemical quality of potable water supply in Warri, Nigeria.
The interaction between man's activities and the environment is gaining world wide attention. Warri an oil producing community in Delta State of Nigeria is faced with environmental oil pollution. Since open and underground water bodies are regarded as final recipients of most environmental pollutants, this study sought to provide data on the levels of the physico-chemical parameters and contami...
متن کاملAssessment of Heavy Metals Pollution in Water and Sediments of Djendjen River, North Eastern Algeria
Water and sediment samples have been collected from five different stations, located along Djendjen River between February and June, 2016 so that the concentrations of Cd, Ni, Zn, and Cu could be determined. The extent of the sediment pollution has been assessed, using the multiple pollution indices, namely Contamination Factor (CF), Pollution Load Index (PLI), and the geoaccumulation index (Ig...
متن کاملEvaluation of the status of heavy metal pollution in surface water and sediments of the Nil River (North Eastern Algeria)
Water and sediment samples were collected from six different stations, located along the Nil River between February and June 2015. Concentrations of cadmium, lead, zinc, and copper were determined. The extent of the sediment pollution was assessed, using the multiple pollution indices, namely contamination factor (CF), pollution load index (PLI), and the geoaccumulation index (Igeo). The result...
متن کامل